Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 31: 67-54, Jan. 2018. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1022118

RESUMO

Background: Pretreatment of lignocellulosic biomass is essential for using it as a raw material for chemical and biofuel production. This study evaluates the effects of variables in the chemical pretreatment of the Arundo biomass on the glucose and xylose concentrations in the final enzymatic hydrolysate. Three pretreatments were tested: acid pretreatment, acid pretreatment followed by alkaline pretreatment, and alkaline pretreatment. Results: The amounts of glucose and xylose released by the enzymatic hydrolysis of the Arundo biomass obtained from acid pretreatment ranged from 6.2 to 19.1 g/L and 1.8 to 3.1 g/L, respectively. The addition of alkaline pretreatment led to a higher yield from the enzymatic hydrolysis, with the average glucose concentration 3.5 times that obtained after biomass hydrolysis with an acid pretreatment exclusively. The use of an alkaline pretreatment alone resulted in glucose and xylose concentrations similar to those obtained in the two-step pretreatment: acid pretreatment followed by alkaline pretreatment. There was no significant difference in 5-hydroxymethylfurfural, furfural, or acetic acid concentrations among the pretreatments. Conclusion: Alkaline pretreatment was essential for obtaining high concentrations of glucose and xylose. The application of an alkaline pretreatment alone resulted in high glucose and xylose concentrations. This result is very significant as it allows a cost reduction by eliminating one step.


Assuntos
Etanol/metabolismo , Poaceae/química , Ácidos/química , Xilose/análise , Celulose/química , Biomassa , Biocombustíveis , Glucose/análise , Hidrólise , Lignina
2.
Electron. j. biotechnol ; 18(1): 10-15, Jan. 2015. graf, tab
Artigo em Inglês | LILACS | ID: lil-736979

RESUMO

Background The production of second generation ethanol from lignocellulosic biomasses that have not had their potential fully explored as feedstock is of great importance. Arundo donax is one these biomasses. It is a promising grassy plant to be used as a renewable resource for the production of fuels and chemicals, because of its fast growth rate, ability to grow in different soil types and climatic conditions. The present study evaluated its use as feedstock for the production of second generation ethanol. Results Initially its chemical characterization was carried out, and a protocol for fractioning the biomass through diluted acid pretreatment followed by alkaline pretreatment was developed, providing a solid fraction which was undergone to enzymatic hydrolysis reaching 42 g/L of glucose, obtained in 30 h of enzymatic hydrolysis. This partially delignified material was subjected to a simultaneous saccharification and fermentation (SSF) process, resulting in an ethanol concentration of 39 g/L at 70 h. Conclusions The fermentability of the pretreated biomass was performed successfully through the conception of simultaneous saccharification and fermentation resulting in approximately 75 L of ethanol per ton of cellulose.


Assuntos
Celulase/metabolismo , Celulase/química , Etanol/metabolismo , Poaceae , Lignina/metabolismo , Lignina/química , Biomassa , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA